Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\mathbb{R}^d$, that for any compact $K\subset \mathbb{R}^d$, there exist constants $C,{\mathfrak{p}},{\mathfrak{q}}>0$ such that for every $\varepsilon \in (0,1]$ and for every $d\in \mathbb{N}$ the nomalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\varepsilon$ with DNN size bounded by $Cd^{\mathfrak{p}}\varepsilon^{-\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\in \mathbb{N}$ and of $\varepsilon \in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.


翻译:具有 ReLU 激活功能的深神经网络( DNN) 证明能够表达在可能高维的州空间上线性局部内分异方程式( PIDE) 的粘度解决方案 $d$。 允许 PIDE 包含高维扩散、 振荡和纯跳跃的 Kolmogorov 方程式 。 我们证明这种PIDE 产生于以 $\ mathbb{R ⁇ d$ 的跳式跳式( 以 $mathbb{ 美元为单位) 。 对于任何保守的 $K\ subset Pmathroparate 方程式( mathfrak{p} $mall $mallformational- flationalcal commation( 以 美元为单位) 的内分立值 。 硬度( 以 美元) 内立方美元 的内存值( 美元) 和内立值的内立值數( 美元内立值) 的數值數值數值數的數值數值數值數值數, 的數值的數值的數值數值數值數值數值數值的數值, 的數值的數值的數值, 的數值的數值的數值的數值的數值的數值的數值的數值的數值, 的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值可以的數值的數值的數值的數值的數值的數值的數值的數值的數值的數的數的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值的數值

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
10+阅读 · 2018年5月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月15日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
10+阅读 · 2018年5月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员