We present an algorithm that enumerates and classifies all edge-to-edge gluings of unit squares that correspond to convex polyhedra. We show that the number of such gluings of $n$ squares is polynomial in $n$, and the algorithm runs in time polynomial in $n$ (pseudopolynomial if $n$ is considered the only input). Our technique can be applied in several similar settings, including gluings of regular hexagons and triangles.
翻译:我们提出一种算法,对单位方形的所有边缘到边缘的格子进行分类和分类,这些格子与锥形聚己体相对应。我们表明,这种格子的美元方块数以美元为单位,以美元为单位,计算法以美元为单位,而计算法以美元为单位时算(如果将美元视为唯一的输入,则以美元为单位,则以美元为单位。我们的技术可以适用于一些类似的环境,包括普通六边形和三角形的格子。