This paper considers the inverse problem of recovering both the unknown, spatially-dependent conductivity $a(x)$ and the nonlinear reaction term $f(u)$ in a reaction-diffusion equation from overposed data. These measurements can consist of: the value of two different solution measurements taken at a later time $T$; time-trace profiles from two solutions; or both final time and time-trace measurements from a single forwards solve data run. We prove both uniqueness results and the convergence of iteration schemes designed to recover these coefficients. The last section of the paper shows numerical reconstructions based on these algorithms.
翻译:本文审议了从过度储存的数据中从反应扩散方程式中回收未知的、空间依赖性传导性($a(x)美元)和非线性反应术语($f(u)美元)的反面问题。这些测量可包括:在以后的一段时间里进行两种不同的溶解测量的价值($T美元);两个解决方案的时间跟踪剖面;或从一个前方进行的最后时间和时间跟踪测量数据运行。我们既证明了独一性结果,也证明了为恢复这些系数而设计的迭代办法的趋同。本文最后一节显示了基于这些算法进行的数字重组。