Federated learning (FL) can empower Internet-of-Vehicles (IoV) networks by leveraging smart vehicles (SVs) to participate in the learning process with minimum data exchanges and privacy disclosure. The collected data and learned knowledge can help the vehicular service provider (VSP) improve the global model accuracy, e.g., for road safety as well as better profits for both VSP and participating SVs. Nonetheless, there exist major challenges when implementing the FL in IoV networks, such as dynamic activities and diverse quality-of-information (QoI) from a large number of SVs, VSP's limited payment budget, and profit competition among SVs. In this paper, we propose a novel dynamic FL-based economic framework for an IoV network to address these challenges. Specifically, the VSP first implements an SV selection method to determine a set of the best SVs for the FL process according to the significance of their current locations and information history at each learning round. Then, each selected SV can collect on-road information and offer a payment contract to the VSP based on its collected QoI. For that, we develop a multi-principal one-agent contract-based policy to maximize the profits of the VSP and learning SVs under the VSP's limited payment budget and asymmetric information between the VSP and SVs. Through experimental results using real-world on-road datasets, we show that our framework can converge 57% faster (even with only 10% of active SVs in the network) and obtain much higher social welfare of the network (up to 27.2 times) compared with those of other baseline FL methods.
翻译:联邦学习联合会(FL)可以通过利用智能工具(SV),使智能车辆(IoV)网络能够以最低限度的数据交换和隐私披露,使Federal学习(FL)能够增强File-Vicle(IoV)网络的功能,通过利用智能车辆(SV)参与学习过程,使智能车辆(SV)能够以最低限度的数据交换和隐私披露,参与学习过程;收集的数据和学到的知识有助于车辆服务提供者(VSP)提高全球模型的准确性,例如道路安全,以及VSP和参与SV的利润。然而,在实施Iove-VL(I)网络的FL(FV)最佳SV(S)选择方法时,根据当前地点的重要性和每个学习周期的信息史,存在重大挑战,例如动态VVV(QI)从大量SVVV(VSP)的有限支付预算(VSP)预算(VS-Pri(V)的多数成本(S-I)框架,通过我们所收集到的VIS(VVI)成本(V-Prialalalalalalalalalalalalalalalal) 数据,从S-al(V)系统(Prial)系统(V-L)系统(Prial)系统(VI)系统(VL)系统(VL)系统(VL)系统(VL)系统(P)系统(P)系统(PL)的多数数据(P)系统(V-l)系统(P)系统(VL)系统(M)的多数数据学习系统(VL)系统(Pal-时间的有限(VL)系统(V-I)系统(V-I)系统(V-I)系统(V-I)系统(V-I)系统(V-I)系统)系统(V-I)系统)系统)系统(V-I)系统(V-I)系统(V-I)系统)系统(VL)系统(VL)系统(VL)的有限的有限)系统(VL)的数据(V-时间的有限)系统(VL)的数据(V-I)系统)的数据(V-时间)的有限税(V)系统(V-V-V-V)系统(V)系统(V)