As a user-friendly and straightforward solution for robot trajectory generation, imitation learning has been viewed as a vital direction in the context of robot skill learning. In contrast to unconstrained imitation learning which ignores possible internal and external constraints arising from environments and robot kinematics/dynamics, recent works on constrained imitation learning allow for transferring human skills to unstructured scenarios, further enlarging the application domain of imitation learning. While various constraints have been studied, e.g., joint limits, obstacle avoidance and plane constraints, the problem of nonlinear hard constraints has not been well-addressed. In this paper, we propose extended kernelized movement primitives (EKMP) to cope with most of the key problems in imitation learning, including nonlinear hard constraints. Specifically, EKMP is capable of learning the probabilistic features of multiple demonstrations, adapting the learned skills towards arbitrary desired points in terms of joint position and velocity, avoiding obstacles at the level of robot links, as well as satisfying arbitrary linear and nonlinear, equality and inequality hard constraints. Besides, the connections between EKMP and state-of-the-art motion planning approaches are discussed. Several evaluations including the planning of joint trajectories for a 7-DoF robotic arm are provided to verify the effectiveness of our framework.


翻译:作为机器人轨迹生成的一个方便用户和直截了当的解决办法,模拟学习被视为机器人技能学习的一个重要方向。与未受限制的模拟学习忽视了环境和机器人动力学/动力学可能带来的内部和外部制约相比,最近关于限制模仿学习的工作允许将人的技能转移到结构化的情景中,进一步扩大了模仿学习的应用领域。虽然对各种制约因素进行了研究,例如联合限制、避免障碍和飞机限制,但非线性硬性制约问题没有得到妥善解决。我们在本文件中提议扩大内心化原始运动(EKMP),以应对模拟学习中的大多数关键问题,包括非线性硬性制约。具体地说,EKMP能够学习多种演示的概率性特征,将所学技能调整到联合位置和速度方面任意期望的点,避免机器人连接层面的障碍,以及满足任意的线性和非线性、平等和不平等的硬性制约。此外,还就EKMP和州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
52+阅读 · 2020年9月7日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2020年10月9日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
FIGR: Few-shot Image Generation with Reptile
Arxiv
5+阅读 · 2019年1月8日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员