Building user trust in dialogue agents requires smooth and consistent dialogue exchanges. However, agents can easily lose conversational context and generate irrelevant utterances. These situations are called dialogue breakdown, where agent utterances prevent users from continuing the conversation. Building systems to detect dialogue breakdown allows agents to recover appropriately or avoid breakdown entirely. In this paper we investigate the use of semi-supervised learning methods to improve dialogue breakdown detection, including continued pre-training on the Reddit dataset and a manifold-based data augmentation method. We demonstrate the effectiveness of these methods on the Dialogue Breakdown Detection Challenge (DBDC) English shared task. Our submissions to the 2020 DBDC5 shared task place first, beating baselines and other submissions by over 12\% accuracy. In ablations on DBDC4 data from 2019, our semi-supervised learning methods improve the performance of a baseline BERT model by 2\% accuracy. These methods are applicable generally to any dialogue task and provide a simple way to improve model performance.
翻译:在对话代理中建立用户信任需要平稳和一致的对话交流。然而,代理商很容易失去对话背景,产生无关的言论。这些情况被称为对话中断,代理商的言论阻止用户继续对话。建立检测对话中断的系统,使代理商能够适当恢复或完全避免崩溃。在本文件中,我们调查使用半监督的学习方法改进对话中断检测,包括继续就Reddit数据集和多重数据增强方法进行预先培训。我们在“对话分解检测挑战”英语共同任务中展示了这些方法的有效性。我们提交2020年DBDC5 共享任务位置的文件首先将基线和其他提交文件的精确度击打12 ⁇ 以上。在2019年关于DBDC4数据的汇总中,我们半监督的学习方法使基线BERT模型的性能提高2 ⁇ 准确度。这些方法一般适用于任何对话任务,并为改进模型性能提供一个简单的方法。