We present a novel method for proposal free instance segmentation that can handle sophisticated object shapes which span large parts of an image and form dense object clusters with crossovers. Our method is based on predicting dense local shape descriptors, which we assemble to form instances. All instances are assembled simultaneously in one go. To our knowledge, our method is the first non-iterative method that yields instances that are composed of learnt shape patches. We evaluate our method on a diverse range of data domains, where it defines the new state of the art on four benchmarks, namely the ISBI 2012 EM segmentation benchmark, the BBBC010 C. elegans dataset, and 2d as well as 3d fluorescence microscopy data of cell nuclei. We show furthermore that our method also applies to 3d light microscopy data of Drosophila neurons, which exhibit extreme cases of complex shape clusters
翻译:我们提出了一个处理复杂物体形状的新颖方法,该方法可以处理一个图像中大部分的复杂物体形状,并形成具有交叉覆盖的密集物体集群。我们的方法基于预测密度密度的局部形状描述器,我们将之组成实例。所有实例都同时组合在一起。据我们所知,我们的方法是产生由学习形状补丁组成的事例的第一种非说明性方法。我们评估了不同数据领域的方法,在其中界定了四个基准领域的新状态,即2012 ISBI EM分割基准、 BBBBC010 C.eligans数据集、 2d 和 3d 细胞核的荧光显微镜数据。我们还表明,我们的方法也适用于德罗霍比亚神经的3D光显微镜数据,这些神经的复杂形状组群展示了极端案例。