Estimating the temperature field of a building envelope could be a time-consuming task. The use of a reduced-order method is then proposed: the Proper Generalized Decomposition method. The solution of the transient heat equation is then re-written as a function of its parameters: the boundary conditions, the initial condition, etc. To avoid a tremendous number of parameters, the initial condition is parameterized. This is usually done by using the Proper Orthogonal Decomposition method to provide an optimal basis. Building this basis requires data and a learning strategy. As an alternative, the use of orthogonal polynomials (Chebyshev, Legendre) is here proposed.


翻译:估计建筑物信封的温度场可能是一项耗时的工作。 然后提议使用减序法: 适当的通用分解法。 然后, 瞬时热方程式的解决方案将重新写成其参数的函数: 边界条件、 初始条件等。 为了避免参数数量之多, 初始条件将参数化。 通常通过使用正正正正正正的分解法来提供最佳基础来完成。 建立这一基础需要数据和学习策略。 作为替代, 在此提议使用正向多面的多面体( Chebyshev、 Tultre) 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年9月10日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年9月10日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员