A high-order quadrature algorithm is presented for computing integrals over curved surfaces and volumes whose geometry is implicitly defined by the level sets of (one or more) multivariate polynomials. The algorithm recasts the implicitly defined geometry as the graph of an implicitly defined, multi-valued height function, and applies a dimension reduction approach needing only one-dimensional quadrature. In particular, we explore the use of Gauss-Legendre and tanh-sinh methods and demonstrate that the quadrature algorithm inherits their high-order convergence rates. Under the action of $h$-refinement with $q$ fixed, the quadrature schemes yield an order of accuracy of $2q$, where $q$ is the one-dimensional node count; numerical experiments demonstrate up to 22nd order. Under the action of $q$-refinement with the geometry fixed, the convergence is approximately exponential, i.e., doubling $q$ approximately doubles the number of accurate digits of the computed integral. Complex geometry is automatically handled by the algorithm, including, e.g., multi-component domains, tunnels, and junctions arising from multiple polynomial level sets, as well as self-intersections, cusps, and other kinds of singularities. A variety of numerical experiments demonstrates the quadrature algorithm on two- and three-dimensional problems, including: randomly generated geometry involving multiple high-curvature pieces; challenging examples involving high degree singularities such as cusps; adaptation to simplex constraint cells in addition to hyperrectangular constraint cells; and boolean operations to compute integrals on overlapping domains.


翻译:高阶二次曲线算法用于计算曲线表面和体积的积分,其几何由(一个或一个以上)多变多元数数的等级组合暗含地基。 算法将隐含地定义的几何转换为隐含地定义的多值高度函数的图形, 并应用一个仅需要一维方位方形的减少维度方法。 特别是, 我们探索高- Legendre 和 tanh- sinh 方法的使用, 并显示二次方程算法继承了它们的高度趋同率。 在以美元固定的( 一个或一个以上)多变量组合中, 二次方程计划产生的精确度为2q$, 其中美元为一维值的高度函数计数; 数字实验显示到22度。 在以美元计方位定的精度动作下, 汇合大约是美元双倍的。 复杂的几何直方位直方位值由三个运算法( 包括: e. g. drelexal deal deal deal deal) 等数、 多度的内径、 多立度的内径、 多立度的内径、 多立、 多立、 多立、 多立度的内径的内径、 多立、 多立、 多立、多立、多立、多立的内径的内径的内径的内径、多立、多立、多立、多立、多立、多立、多立、多立、多立、多立、多立、多立、多立、多的内径的内径的内径、多立、多立、多立、多的内径的内径的内径的内径的内径的内径的内径、多的内、多的内径、多等的内径、多的内、多的内、多的内、多的内、多的内、多的内、多的内、多的内、多的内径、多的内径、多的内、多的内、多的内、多形、多的内、多的内、多的内、多的内、多的内、多形、多的内、多形的内、多的内、多的内、多的内、多的内、多

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员