Deep Neural Networks (DNNs) are ubiquitous in today's computer vision land-scape, despite involving considerable computational costs. The mainstream approaches for runtime acceleration consist in pruning connections (unstructured pruning) or, better, filters (structured pruning), both often requiring data to re-train the model. In this paper, we present RED, a data-free structured, unified approach to tackle structured pruning. First, we propose a novel adaptive hashing of the scalar DNN weight distribution densities to increase the number of identical neurons represented by their weight vectors. Second, we prune the network by merging redundant neurons based on their relative similarities, as defined by their distance. Third, we propose a novel uneven depthwise separation technique to further prune convolutional layers. We demonstrate through a large variety of benchmarks that RED largely outperforms other data-free pruning methods, often reaching performance similar to unconstrained, data-driven methods.


翻译:深神经网络 (DNNs) 在今天的计算机视野中,尽管计算成本相当高,但是在当今的计算机视野陆地上是无处不在的。运行时间加速的主流方法包括运行连接(无结构的运行运行)或更好的过滤器(结构的运行),两者都往往需要数据来重新对模型进行再培训。在本文中,我们提出了RED,这是一个没有数据的结构化和统一的处理结构化运行的方法。首先,我们建议对 标标的 DNN 重量分布密度进行新颖的适应性散列,以增加其重量矢量所代表的相同神经元的数量。第二,我们根据它们的距离定义,根据它们的相对相似性将冗余神经元合并为网络。第三,我们提出了一种新的不均匀的深度分离技术,以进一步提振动卷动层。我们通过大量基准来证明RED基本上超越了其他无数据运行方法,常常达到与不受控制的数据驱动的方法相似的性能。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Compression of Deep Learning Models for Text: A Survey
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Compression of Deep Learning Models for Text: A Survey
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年6月27日
Top
微信扫码咨询专知VIP会员