Deep Neural Networks (DNNs) are ubiquitous in today's computer vision land-scape, despite involving considerable computational costs. The mainstream approaches for runtime acceleration consist in pruning connections (unstructured pruning) or, better, filters (structured pruning), both often requiring data to re-train the model. In this paper, we present RED, a data-free structured, unified approach to tackle structured pruning. First, we propose a novel adaptive hashing of the scalar DNN weight distribution densities to increase the number of identical neurons represented by their weight vectors. Second, we prune the network by merging redundant neurons based on their relative similarities, as defined by their distance. Third, we propose a novel uneven depthwise separation technique to further prune convolutional layers. We demonstrate through a large variety of benchmarks that RED largely outperforms other data-free pruning methods, often reaching performance similar to unconstrained, data-driven methods.
翻译:深神经网络 (DNNs) 在今天的计算机视野中,尽管计算成本相当高,但是在当今的计算机视野陆地上是无处不在的。运行时间加速的主流方法包括运行连接(无结构的运行运行)或更好的过滤器(结构的运行),两者都往往需要数据来重新对模型进行再培训。在本文中,我们提出了RED,这是一个没有数据的结构化和统一的处理结构化运行的方法。首先,我们建议对 标标的 DNN 重量分布密度进行新颖的适应性散列,以增加其重量矢量所代表的相同神经元的数量。第二,我们根据它们的距离定义,根据它们的相对相似性将冗余神经元合并为网络。第三,我们提出了一种新的不均匀的深度分离技术,以进一步提振动卷动层。我们通过大量基准来证明RED基本上超越了其他无数据运行方法,常常达到与不受控制的数据驱动的方法相似的性能。