This paper introduces the logitr R package for fast maximum likelihood estimation of multinomial logit and mixed logit models with unobserved heterogeneity across individuals, which is modeled by allowing parameters to vary randomly over individuals according to a chosen distribution. The package is faster than other similar packages such as mlogit, gmnl, mixl, and apollo, and it supports utility models specified with "preference space" or "willingness to pay (WTP) space" parameterizations, allowing for the direct estimation of marginal WTP. The typical procedure of computing WTP post-estimation using a preference space model can lead to unreasonable distributions of WTP across the population in mixed logit models. The paper provides a discussion of some of the implications of each utility parameterization for WTP estimates. It also highlights some of the design features that enable logitr's performant estimation speed and includes a benchmarking exercise with similar packages. Finally, the paper highlights additional features that are designed specifically for WTP space models, including a consistent user interface for specifying models in either space and a parallelized multi-start optimization loop, which is particularly useful for searching the solution space for different local minima when estimating models with non-convex log-likelihood functions.
翻译:本文介绍了用于快速最有可能估计多份日志和个人之间未观测到的异质性、且具有个人之间未观测到异质性的混合日志模型的对数R 包,该套模型的模型根据选定的分布允许参数在个人之间随机变化。该套软件比其他类似包,如 mlogit、 gmnl、 mixl 和 apollo 等,要快一些,而且它支持以“偏好空间”或“愿意支付(WTP)空间”参数化指定的实用模型,以便直接估计边际WTP。使用偏好空间模型计算WTP后估计的典型程序,可能导致在混合日志模型中将WTP不合理的分布在人群中。该文件讨论了WTP对WTP估计数的每一种效用参数的一些影响。它还强调了使logitr能够进行性评估速度或“愿意支付(WTP)空间”参数化的一些设计特点,并包含一个与类似软件包一样的基准练习。最后,该文件强调了专门为WTP空间模型设计的额外特征,包括一个用于在空间模型中具体指定模型的用户界面的一致的用户界面和在混合空间模型中平行的多式多式优化模型时,这对本地的模型特别有用。