Parametric statistical methods play a central role in analyzing risk through its underlying frequency and severity components. Given the wide availability of numerical algorithms and high-speed computers, researchers and practitioners often model these separate (although possibly statistically dependent) random variables by fitting a large number of parametric probability distributions to historical data and then comparing goodness-of-fit statistics. However, this approach is highly susceptible to problems of overfitting because it gives insufficient weight to fundamental considerations of functional simplicity and adaptability. To address this shortcoming, we propose a formal mathematical measure for assessing the versatility of frequency and severity distributions prior to their application. We then illustrate this approach by computing and comparing values of the versatility measure for a variety of probability distributions commonly used in risk analysis.
翻译:暂无翻译