Natural language understanding(NLU) is challenging for finance due to the lack of annotated data and the specialized language in that domain. As a result, researchers have proposed to use pre-trained language model and multi-task learning to learn robust representations. However, aggressive fine-tuning often causes over-fitting and multi-task learning may favor tasks with significantly larger amounts data, etc. To address these problems, in this paper, we investigate model-agnostic meta-learning algorithm(MAML) in low-resource financial NLU tasks. Our contribution includes: 1. we explore the performance of MAML method with multiple types of tasks: GLUE datasets, SNLI, Sci-Tail and Financial PhraseBank; 2. we study the performance of MAML method with multiple single-type tasks: a real scenario stock price prediction problem with twitter text data. Our models achieve the state-of-the-art performance according to the experimental results, which demonstrate that our method can adapt fast and well to low-resource situations.
翻译:由于缺乏附加说明的数据和该领域的专门语言,自然语言理解(NLU)对融资具有挑战性,因此,研究人员提议使用预先培训的语言模型和多任务学习来学习强有力的代表性,然而,积极的微调往往导致超装和多任务学习,这可能会有利于使用数量大得多的数据等任务。 为解决这些问题,我们在本文件中调查低资源金融NLU任务中模型-不可知的元学习算法(MAML)。我们的贡献包括:1. 我们探索MAML方法的性能,并开展多种任务:GLU数据集、SNLI、Sci-Tail和Final PhraseBank;2. 我们研究MAML方法的性能,开展多种单一类型任务:一种真实的设想价格预测问题,使用Twitter文本数据。我们的模型根据实验结果取得了最先进的性能,这表明我们的方法能够快速和很好地适应低资源状况。</s>