This study addresses a series of methodological questions that arise when modeling inflectional morphology with Linear Discriminative Learning. Taking the semi-productive German noun system as example, we illustrate how decisions made about the representation of form and meaning influence model performance. We clarify that for modeling frequency effects in learning, it is essential to make use of incremental learning rather than the endstate of learning. We also discuss how the model can be set up to approximate the learning of inflected words in context. In addition, we illustrate how in this approach the wug task can be modeled in considerable detail. In general, the model provides an excellent memory for known words, but appropriately shows more limited performance for unseen data, in line with the semi-productivity of German noun inflection and generalization performance of native German speakers.
翻译:本研究涉及一系列方法问题,这些问题是用线性差异性学习来模拟内分形形态学时出现的一系列方法问题。我们以半效德国名词系统为例,说明对形式和含义的表述所作的决定如何影响示范性业绩。我们澄清,对于模拟学习中的频率效应,必须利用渐进式学习而不是结束式学习状态。我们还讨论如何建立模型,以近似在背景中学习反常词。此外,我们说明如何在这一方法中以相当详细的方式模拟变形任务。一般而言,该模型为已知词提供了极好的记忆,但恰当地表明,与德国母语的半生产力和通用性表现相一致,对未见数据的性能较为有限。