We consider gradient-flow (GF) and gradient-descent (GD) on linear classification problems in possibly infinite-dimensional and non-hilbertian Banach spaces. For exponential-tailed loss functions, including the usual exponential and logistic loss functions, we establish $\mathcal O (\log (n)/ t)$ convergence rate for the bias in case of GF, and $\widetilde{\mathcal O}(\log (n)/\sqrt{t})$ in case of GD. This is a net improvement on best known rates, namely $\mathcal O(\log (n) / \log (t))$. See Ji and Telgarsky (2019), for example. Upto logarithmic factors, our GD rate matches the very recent parallel work from Ji and Telgarsky (2020) which uses an agressive stepsize schedule. Finally, using the aggressive stepsize schedule proposed py Ji and Telgarsky (2020), we are able to obtain a convergence rate of $\mathcal O(\log (n)/t)$ for the bias. Our methods of analysis are quite general and radically different from the usual techniques used in the literature: we use nonlinear error analysis for convex functions, in the spirit of Kurdyka-\L{}ojasiewicz theory. One major advantage of our method is that it allows us to convert any convergence rate for the margin, to a convergence rate on the bias, which is at least as good as the former. We believe our work will provide an alternative approach for analyzing the implicit bias of gradient-flow / gradient-descent in very general settings.
翻译:我们考虑在可能无限的和不自由的Banach空间的线性分类问题上的梯度-流(GF)和梯度-日落(GD)问题。对于指数尾的递减函数,包括通常的指数性和后勤性损失函数,我们为GF的偏差设立了$mathcal O(log (n)/ t)美元(g)美元),而对于GD,则采用了美元全局性推移(n)/sqrt{t}(GD)美元。这是已知最高比率($\mathcal O(n)/slog(t))/slog(t)美元)的净改进。对于指数尾尾尾尾的递递递递增(t)损失函数,例如,见Ji和Telgarsky (2019) 通常的指数-log(n) 和tt) 。对于Gelgarsky(2020) 的偏差,我们的GGD率率与最近同时开展的工作相匹配。最后,使用Pi和Telgarsky (nal) 方法,我们一般的递增(n-ral) roal) 的递解法的递增法法的法系的法系,我们一般法系的法系的法系的法系法系法系的法系的法系的法系的法系的法系的法系的法系的法系的法系,用于是用于用于一般的理论系的不偏差法系的不偏差。