The emergence of large pre-trained models based on natural language has breathed new life into robotics development. Extensive research has integrated large models with robots, utilizing the powerful semantic understanding and generation capabilities of large models to facilitate robot control through natural language instructions gradually. However, we found that robots that strictly adhere to human instructions, especially those containing misleading information, may encounter errors during task execution, potentially leading to safety hazards. This resembles the concept of counterfactuals in natural language processing (NLP), which has not yet attracted much attention in robotic research. In an effort to highlight this issue for future studies, this paper introduced directive counterfactuals (DCFs) arising from misleading human directives. We present DynaMIC, a framework for generating robot task flows to identify DCFs and relay feedback to humans proactively. This capability can help robots be sensitive to potential DCFs within a task, thus enhancing the reliability of the execution process. We conducted semantic-level experiments and ablation studies, showcasing the effectiveness of this framework.
翻译:暂无翻译