Fiber-reinforced ceramic-matrix composites are advanced materials resistant to high temperatures, with application to aerospace engineering. Their analysis depends on the detection of embedded fibers, with semi-supervised techniques usually employed to separate fibers within the fiber beds. Here we present an open computational pipeline to detect fibers in ex-situ X-ray computed tomography fiber beds. To separate the fibers in these samples, we tested four different architectures of fully convolutional neural networks. When comparing our neural network approach to a semi-supervised one, we obtained Dice and Matthews coefficients greater than $92.28 \pm 9.65\%$, reaching up to $98.42 \pm 0.03 \%$, showing that the network results are close to the human-supervised ones in these fiber beds, in some cases separating fibers that human-curated algorithms could not find. The software we generated in this project is open source, released under a permissive license, and can be freely adapted and re-used in other domains. All data and instructions on how to download and use it are also available.
翻译:纤维强化陶瓷矩阵复合材料是耐高温的先进材料,适用于航空航天工程。其分析取决于对嵌入纤维的检测,通常使用半监督技术在纤维床内分离纤维。在这里,我们展示了一个开放式的计算管道,用于检测在原X光中检测纤维,计算成透视纤维床。为了分离这些样品中的纤维,我们测试了四套完全革命性神经网络的不同结构。在将我们的神经网络方法与半监督的神经网络方法相比较时,我们获得了超过92.28\pm 9.65 美元的迪斯和马修斯系数,达到98.42\pm0.03 美元,显示网络结果接近于这些纤维床的人类监督纤维床,有时分离出人类加工算法无法找到的纤维。我们在这个项目中生成的软件是开放源,在许可下发布,可以自由调整和再用于其他领域。所有关于如何下载和使用的数据和指示也是可用的。