Image obfuscation (blurring, mosaicing, etc.) is widely used for privacy protection. However, computer vision research often overlooks privacy by assuming access to original unobfuscated images. In this paper, we explore image obfuscation in the ImageNet challenge. Most categories in the ImageNet challenge are not people categories; nevertheless, many incidental people are in the images, whose privacy is a concern. We first annotate faces in the dataset. Then we investigate how face blurring -- a typical obfuscation technique -- impacts classification accuracy. We benchmark various deep neural networks on face-blurred images and observe a disparate impact on different categories. Still, the overall accuracy only drops slightly ($\leq 0.68\%$), demonstrating that we can train privacy-aware visual classifiers with minimal impact on accuracy. Further, we experiment with transfer learning to 4 downstream tasks: object recognition, scene recognition, face attribute classification, and object detection. Results show that features learned on face-blurred images are equally transferable. Data and code are available at https://github.com/princetonvisualai/imagenet-face-obfuscation.


翻译:图像模糊(blurring, masaiscation, etc.) 被广泛用于隐私保护。 然而, 计算机视觉研究往往通过假设访问原始未模糊图像而忽略隐私。 在本文中, 我们探索图像网络挑战中的图像模糊。 图像网络的大多数类别不是人类别; 然而, 许多偶然人物在图像中, 隐私是一个问题。 我们首先在数据集中做面部笔记。 然后我们调查面部模糊( 典型的模糊技术) 影响分类精度。 我们将各种深层神经网络以面部模糊图像为基准, 并观察不同类别的不同影响。 但是, 总体精确度仅略微下降( 0. 68 美元 美元 ), 表明我们可以培训对准确性影响最小的隐私认知视觉分类师。 此外, 我们尝试将学习转移到4个下游任务: 对象识别、 现场识别、 脸部属性分类和物体探测。 结果显示, 脸部图像上学习的特征也同样可转让。 数据和代码可以在 https://githfoubb. com/priagementalimonalationalationalationalationalationalationalationation.

0
下载
关闭预览

相关内容

ImageNet项目是一个用于视觉对象识别软件研究的大型可视化数据库。超过1400万的图像URL被ImageNet手动注释,以指示图片中的对象;在至少一百万个图像中,还提供了边界框。ImageNet包含2万多个类别; [2]一个典型的类别,如“气球”或“草莓”,包含数百个图像。第三方图像URL的注释数据库可以直接从ImageNet免费获得;但是,实际的图像不属于ImageNet。自2010年以来,ImageNet项目每年举办一次软件比赛,即ImageNet大规模视觉识别挑战赛(ILSVRC),软件程序竞相正确分类检测物体和场景。 ImageNet挑战使用了一个“修剪”的1000个非重叠类的列表。2012年在解决ImageNet挑战方面取得了巨大的突破,被广泛认为是2010年的深度学习革命的开始。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
11+阅读 · 2019年4月15日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员