Convolutional Networks (ConvNets) excel at semantic segmentation and have become a vital component for perception in autonomous driving. Enabling an all-encompassing view of street-scenes, omnidirectional cameras present themselves as a perfect fit in such systems. Most segmentation models for parsing urban environments operate on common, narrow Field of View (FoV) images. Transferring these models from the domain they were designed for to 360-degree perception, their performance drops dramatically, e.g., by an absolute 30.0% (mIoU) on established test-beds. To bridge the gap in terms of FoV and structural distribution between the imaging domains, we introduce Efficient Concurrent Attention Networks (ECANets), directly capturing the inherent long-range dependencies in omnidirectional imagery. In addition to the learned attention-based contextual priors that can stretch across 360-degree images, we upgrade model training by leveraging multi-source and omni-supervised learning, taking advantage of both: Densely labeled and unlabeled data originating from multiple datasets. To foster progress in panoramic image segmentation, we put forward and extensively evaluate models on Wild PAnoramic Semantic Segmentation (WildPASS), a dataset designed to capture diverse scenes from all around the globe. Our novel model, training regimen and multi-source prediction fusion elevate the performance (mIoU) to new state-of-the-art results on the public PASS (60.2%) and the fresh WildPASS (69.0%) benchmarks.


翻译: Convolution Nets (Convillal Nets) 擅长语义分割, 并已成为自主驱动感知的至关重要组成部分。 使得对街道- 摄像头和成像领域之间结构分布的全方位观点能够包罗万象的全方位观察, 全方位摄像头显示在这样的系统中。 大部分城市环境分解模型的模型在普通的、 狭窄的视野( FoV) 图像上运行。 将这些模型从设计用于360度感知的域迁移到360度感知, 其性能显著下降, 例如, 在已建立的测试台上以绝对的 30. 0% (MIOU) 为绝对值下降。 为了缩小FOV和成像领域之间结构分布上的差距, 我们引入了高效的同步关注网络(ECANets), 直接捕捉全方位图像中固有的长期依赖性能模型。 除了学习到超过360度图像, 我们通过多源和全方位监督的学习来提升模型培训模式, 提升模型培训模式培训,, 利用以下两种方法: 高层次的、 我们的上标和未标的公众级的图像- 上的数据- 上的数据- 高级的图像- Servial- sal- stradeal- sal- sal- laveal- sal- sal- sal- sal- sal- laction- sal- salation- laction- sal- salation- sal- sal- salation- salvicalation- salation- salction- salation- salction- salation- salation- salation- salation- sal- sal- sal- salation- sal- sal- sal- sal- salation- sal- sal- salation- salation- salction- salation- salation- salation- sal- sal- sal- sal- sal- salation- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
6+阅读 · 2019年4月4日
Conditional BERT Contextual Augmentation
Arxiv
8+阅读 · 2018年12月17日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员