Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynamic runtime that enables such applications to make effective use of a 5G network, computing at the edge of this network, and resources in the centralized cloud, at all times. Our runtime continuously monitors the interaction among the microservices, estimates the data produced and exchanged among the microservices, and uses a novel graph min-cut algorithm to dynamically map the microservices to the edge or the cloud to satisfy application-specific response times. Our runtime also handles temporary network partitions, and maintains data consistency across the distributed fabric by using microservice proxies to reduce WAN bandwidth by an order of magnitude, all in an {\it application-specific manner} by leveraging knowledge about the application's functions, latency-critical pipelines and intermediate data. We illustrate the use of our runtime by successfully mapping two complex, representative real-world video analytics applications to the AWS/Verizon Wavelength edge-cloud architecture, and improving application response times by 2x when compared with a static edge-cloud implementation.
翻译:100+毫秒的中央云计算网络延滞时间无法满足新产生的5G应用,如自主驱动、智能制造、触摸互联网、增强或虚拟现实等,需要数十毫秒至二毫秒的反应时间。我们描述一个新的动态运行时间,使这种应用能够有效地使用5G网络,在这个网络边缘进行计算,以及集中云中的资源,在任何时候都以千分之一的方式进行。我们的运行时间持续地监测微服务之间的相互作用,估计微服务之间产生和交换的数据,并使用新颖的图表小剪裁算法,动态地绘制微服务到边缘或云层的地图,以满足具体应用程序的反应时间。我们的运行时间还处理临时网络分区,并保持分布在分布的构架中的数据一致性,方法是利用微服务前期,通过数量顺序将广度宽度带宽度的带宽度减少,所有时间都以千分百分百分百分百位方式进行。我们运行的时间是通过两个复杂、有代表性的、具有代表性的图像时间段算出的图像时间来成功地绘制向边缘或图像平方平方平方平方位应用A-时段对A-千平方平方平方平流的系统实施。