Differential framing of issues can lead to divergent world views on important issues. This is especially true in domains where the information presented can reach a large audience, such as traditional and social media. Scalable and reliable measurement of such differential framing is an important first step in addressing them. In this work, based on the intuition that framing affects the tone and word choices in written language, we propose a framework for modeling the differential framing of issues through masked token prediction via large-scale fine-tuned language models (LMs). Specifically, we explore three key factors for our framework: 1) prompt generation methods for the masked token prediction; 2) methods for normalizing the output of fine-tuned LMs; 3) robustness to the choice of pre-trained LMs used for fine-tuning. Through experiments on a dataset of articles from traditional media outlets covering five diverse and politically polarized topics, we show that our framework can capture differential framing of these topics with high reliability.
翻译:不同的问题框架可以导致世界对重要问题的不同看法。在所提供的信息能够传达给广大受众的领域,如传统媒体和社会媒体,情况尤其如此。这种差异框架的可扩展和可靠的衡量是解决这些问题的重要第一步。在这项工作中,基于对影响书面语言的语调和文字选择的直觉,我们提出了一个框架,通过大规模微调语言模型(LMS)进行蒙面象征性预测来模拟差异框架。具体地说,我们探讨了我们框架的三个关键因素:1) 迅速生成代号预测方法;2) 微调LMS产出的正常化方法;3) 用于微调的预先培训LMS选择的稳健性。我们通过实验从传统媒体渠道获得的关于五个不同和政治两极化议题的文章的数据集,表明我们的框架可以非常可靠地捕捉到这些专题的不同框架。