The Higher-Order $\Psi$-calculus framework (HO$\Psi$) is a generalisation of many first- and higher-order extensions of the $\pi$-calculus. It was proposed by Parrow et al. who showed that higher-order calculi such as HO$\pi$ and CHOCS can be expressed as HO$\Psi$-calculi. In this paper we present a generic type system for HO$\Psi$-calculi which extends previous work by H\"uttel on a generic type system for first-order $\Psi$-calculi. Our generic type system satisfies the usual property of subject reduction and can be instantiated to yield type systems for variants of HO{\pi}, including the type system for termination due to Demangeon et al. Moreover, we derive a type system for the $\rho$-calculus, a reflective higher-order calculus proposed by Meredith and Radestock. This establishes that our generic type system is richer than its predecessor, as the $\rho$-calculus cannot be encoded in the $\pi$-calculus in a way that satisfies standard criteria of encodability.
翻译:高阶 $ Psi$- 计算框架 (HO$\ Psi$) 是许多一等和高阶 美元 计算框架(HO$\ Psi$) 的概括性一等和高阶扩展 $ pi$ 计算框架 。 由Parrow等人 等人 提出, 他们表明, 高阶 的 计算, 如 HO$\ pi$ 和 CHOCS 等高阶计算框架, 可以 以 HO$\ Psi$- 计算框架 表示 。 在本文中, 我们为 HO$\ Psi$- 计算框架 提供了一个通用类型系统, 扩展 H\ uteltel 先前关于 一级 通用类型系统 $\ Psi$- caculi 计算系统的工作 。 我们的通用类型系统满足了通常的减排对象属性, 并且可以立即生成 HO\ pivi 变量 类型系统, 包括 Demangeon 等人 和 Calcule 的终止系统 。 此外, 我们为 $ 计算 和 Radestal- colbility adexcoldecolvercolverde ad ad ad ad adcolvercolde ad ad ad ad ad add add add adcoldecal add add add ad ad add ad adcoldecolde ad $ ad add ad ad ad ad ad ad ad add add ad add add 。