Automatic analysis of teacher and student interactions could be very important to improve the quality of teaching and student engagement. However, despite some recent progress in utilizing multimodal data for teaching and learning analytics, a thorough analysis of a rich multimodal dataset coming for a complex real learning environment has yet to be done. To bridge this gap, we present a large-scale MUlti-modal Teaching and Learning Analytics (MUTLA) dataset. This dataset includes time-synchronized multimodal data records of students (learning logs, videos, EEG brainwaves) as they work in various subjects from Squirrel AI Learning System (SAIL) to solve problems of varying difficulty levels. The dataset resources include user records from the learner records store of SAIL, brainwave data collected by EEG headset devices, and video data captured by web cameras while students worked in the SAIL products. Our hope is that by analyzing real-world student learning activities, facial expressions, and brainwave patterns, researchers can better predict engagement, which can then be used to improve adaptive learning selection and student learning outcomes. An additional goal is to provide a dataset gathered from real-world educational activities versus those from controlled lab environments to benefit the educational learning community.


翻译:对教师和学生互动进行自动分析,对于提高教学质量和学生参与的质量可能非常重要。然而,尽管最近在利用多式联运数据进行教学和学习分析方面取得了一些进展,但是,尽管最近在利用多式联运数据进行教学和学习分析方面取得了一些进展,但对为复杂真实的学习环境而来的丰富的多式联运数据集的彻底分析尚未完成。为了缩小这一差距,我们提出了大规模Multi现代教学和学习分析分析(MUTLA)数据集(MUTLA),该数据集包括学生在学习和学习分析(MUTLA)产品时,对学生进行时间同步的多式联运数据记录(学习日志、视频、EEEEEG脑波波),因为他们在Squirrel AI学习系统(SAIL)的各个科目中工作,以解决不同程度的困难问题。数据集资源包括SAIL学习记录库的用户记录、EEG头盔设备收集的脑波数据以及学生在学习和学习萨利尔产品时由网络摄像机采集的视频数据。我们希望通过分析真实世界的学生学习活动、面表和脑波模式,研究人员可以更好地预测参与,然后用来改进适应学习选择和学生学习结果。另一个目标是从实验室学习环境到学习活动。另一个目标是从实际环境学习。从实验室学习活动到学习。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月3日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员