Non-idempotent intersection types provide quantitative information about typed programs, and have been used to obtain time and space complexity measures. Intersection type systems characterize termination, so restrictions need to be made in order to make typability decidable. One such restriction consists in using a notion of finite rank for the idempotent intersection types. In this work, we define a new notion of rank for the non-idempotent intersection types. We then define a novel type system and a type inference algorithm for the lambda-calculus, using the new notion of rank 2. In the second part of this work, we extend the type system and the type inference algorithm to use the quantitative properties of the non-idempotent intersection types to infer quantitative information related to resource usage.
翻译:无能力交叉路口类型提供关于打字程序的定量信息,并被用于获取时间和空间复杂度测量。交叉类型系统是终止的特征,因此需要做出限制,以便进行可打分。这种限制之一是使用非能力交叉型的定级概念。在这项工作中,我们定义了非能力交叉型的定级新概念。然后,我们用新的第2级概念为羊羔计算法定义了新型系统和类型推算算法,在这项工作的第二部分,我们扩展了类型系统和类型推算法,以便使用非能力交叉型的定量属性来推断与资源使用有关的定量信息。