The main goal of machine learning (ML) is to study and improve mathematical models which can be trained with data provided by the environment to infer the future and to make decisions without necessarily having complete knowledge of all influencing elements. In this work, we describe how ML can be a powerful tool in studying climate modeling. Tree ring growth was used as an implementation in different aspects, for example, studying the history of buildings and environment. By growing and via the time, a new layer of wood to beneath its bark by the tree. After years of growing, time series can be applied via a sequence of tree ring widths. The purpose of this paper is to use ML algorithms and Extreme Value Theory in order to analyse a set of tree ring widths data from nine trees growing in Nottinghamshire. Initially, we start by exploring the data through a variety of descriptive statistical approaches. Transforming data is important at this stage to find out any problem in modelling algorithm. We then use algorithm tuning and ensemble methods to improve the k-nearest neighbors (KNN) algorithm. A comparison between the developed method in this study ad other methods are applied. Also, extreme value of the dataset will be more investigated. The results of the analysis study show that the ML algorithms in the Random Forest method would give accurate results in the analysis of tree ring widths data from nine trees growing in Nottinghamshire with the lowest Root Mean Square Error value. Also, we notice that as the assumed ARMA model parameters increased, the probability of selecting the true model also increased. In terms of the Extreme Value Theory, the Weibull distribution would be a good choice to model tree ring data.
翻译:机器学习(ML)的主要目标是研究并改进数学模型,这些模型可以通过环境提供的数据来培训,以推断未来,并在不完全了解所有影响要素的情况下作出决定。在这项工作中,我们描述了ML如何成为研究气候模型的有力工具。树环增长被作为一种不同方面的执行工具使用,例如,研究建筑和环境的历史。通过生长和随着时间的推移,在树的树皮下面有一层新的木质。经过多年的生长,时间序列可以通过树环宽度序列来应用。本文的目的是使用ML算法和极端值理论来分析从Nottinghamshire生长的9棵树中采集的一组树环宽度数据。一开始,我们首先通过多种描述性统计方法来探索数据。在这个阶段,转换数据很重要,以找出建模算法中的任何问题。我们随后使用算法和堆积法来改进K-更接近的邻居(KNNN)算法。本文的目的是利用ML算法的概率方法来比较这个模型的精度模型的精度值。我们用其他方法来比较这个模型的精度的精度值的精度分布。此外的精度数据分析结果将会在研究中进行一个最深的精度分析。我们用最深的精度分析。 将使得的精度数据结果能的精度数据分析中, 的精度数据序列的精度数据结果将使得更细的精度数据结果能能能能能的精度数据分析。