The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation of relevance, inducing nonlinear interrelations between the data. The ability to model complex dependency relationships between random variables has become increasingly popular in the realm of information retrieval, and the need to further explore these dependencies for data fusion has been recently acknowledged. Copulas provide a framework to separate the dependence structure from the margins. Inspired by the theory of copulas, we propose a new unsupervised, dynamic, nonlinear, rank fusion method, based on a nested composition of non-algebraic function pairs. The dependence structure of the model is tailored by leveraging query-document correlations on a per-query basis. We experimented with three topic sets over CLEF corpora fusing 3 and 6 retrieval systems, comparing our method against the CombMNZ technique and other nonlinear unsupervised strategies. The experiments show that our fusion approach improves performance under explicit conditions, providing insight about the circumstances under which linear fusion techniques have comparable performance to nonlinear methods.


翻译:信息检索中排位合并的目标是从多个搜索结果中提供单一的输出列表。 通过合并各种IR系统的产出来改进性能是一项具有挑战性的任务。一个中心点是,许多非明显因素都涉及到相关性的估计,从而导致数据之间的非线性相互关系。在信息检索领域,随机变量之间模拟复杂依赖关系的能力越来越受欢迎,而进一步探索数据聚合依赖关系的必要性最近已经得到承认。 Copulas提供了一个框架,可以将依赖结构与边际结构分开。在 Cogulas理论的启发下,我们提出一种新的不受监督的、动态的、非线性、级融合方法,其基础是非地理功能配对的嵌套构成。模型的依赖性结构通过在信息检索领域利用查询文件相关性来调整。我们试验了三个专题,即CLEF Corora Fus 3 和 6 检索系统,将我们的方法与CombMNZ技术和其他非线性非线性战略进行比较。根据Copultures理论,我们提出了一个新的不受监督的、动态、非线性、线性、级融合方法,在不透视环境下,实验显示我们可比较性观测方法,在不透视的精确环境中改进性方法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员