To obtain suitable feature distribution is a difficult task in machine learning, especially for unsupervised learning. In this paper, we propose a novel self-learning local supervision encoding framework based on RBMs, in which the self-learning local supervisions from visible layer are integrated into the contrastive divergence (CD) learning of RBMs to constrict and disperse the distribution of the hidden layer features for clustering tasks. In the framework, we use sigmoid transformation to obtain hidden layer and reconstructed hidden layer features from visible layer and reconstructed visible layer units during sampling procedure. The self-learning local supervisions contain local credible clusters which stem from different unsupervised learning and unanimous voting strategy. They are fused into hidden layer features and reconstructed hidden layer features. For the same local clusters, the hidden features and reconstructed hidden layer features of the framework tend to constrict together. Furthermore, the hidden layer features of different local clusters tend to disperse in the encoding process. Under such framework, we present two instantiation models with the reconstruction of two different visible layers. One is self-learning local supervision GRBM (slsGRBM) model with Gaussian linear visible units and binary hidden units using linear transformation for visible layer reconstruction. The other is self-learning local supervision RBM (slsRBM) model with binary visible and hidden units using sigmoid transformation for visible layer reconstruction.


翻译:为了获得适当的地貌分布,在机器学习中是一项困难的任务,特别是对于不受监督的学习来说,特别对于不受监督的学习来说,要获得适当的地貌分布是一件困难的任务。在本文件中,我们提议了一个基于成果管理制的新颖的自我学习的地方监督编码框架,在这种框架中,从可见的层中将自学的本地监督编码框架,从可见的层中将自学的地方监督纳入到差异鲜明的分层中(CD)对成果管理制的学习中,以收紧和分散用于集群任务的隐藏层特征的分布。在这种框架内,我们使用小类变异的隐藏层来从可见的层中获取隐藏的层和重建隐藏的层特征。在取样过程中,自学的地方监督包括来自不同不受监督的学习和一致投票战略的当地可信的组群。它们被结合到隐藏的层特性和重新建立的隐藏的层特征。对于相同的地方组群来说,框架的隐藏的层特征和重新形成的隐藏层特征往往集中在编码过程中。在这种框架内,我们提出两种瞬间模式,重建两个不同的可见的层次。一个是自学的GRB(lsGBM)模型,其自学自学的模型,使用可见的直线性结构的模型,使用可见的自我改造,用可见的脚层结构结构重建,使用可见的硬的脚的脚的重建。

0
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Top
微信扫码咨询专知VIP会员