In the field of skeleton-based action recognition, current top-performing graph convolutional networks (GCNs) exploit intra-sequence context to construct adaptive graphs for feature aggregation. However, we argue that such context is still \textit{local} since the rich cross-sequence relations have not been explicitly investigated. In this paper, we propose a graph contrastive learning framework for skeleton-based action recognition (\textit{SkeletonGCL}) to explore the \textit{global} context across all sequences. In specific, SkeletonGCL associates graph learning across sequences by enforcing graphs to be class-discriminative, \emph{i.e.,} intra-class compact and inter-class dispersed, which improves the GCN capacity to distinguish various action patterns. Besides, two memory banks are designed to enrich cross-sequence context from two complementary levels, \emph{i.e.,} instance and semantic levels, enabling graph contrastive learning in multiple context scales. Consequently, SkeletonGCL establishes a new training paradigm, and it can be seamlessly incorporated into current GCNs. Without loss of generality, we combine SkeletonGCL with three GCNs (2S-ACGN, CTR-GCN, and InfoGCN), and achieve consistent improvements on NTU60, NTU120, and NW-UCLA benchmarks. The source code will be available at \url{https://github.com/OliverHxh/SkeletonGCL}.


翻译:在基于骨骼的行动识别领域,当前以顶级表现的图形革命网络(GCNs)利用序列内背景来构建特性聚合的适应性图表。 然而,我们争辩说,由于没有明确调查丰富的跨序列关系,这种背景仍然是\textit{local},因为没有明确调查丰富的跨序列关系。在本文中,我们提议了一个基于骨骼的行动识别(\textit{SkeletonGCL)图化对比学习框架,以在所有序列中探索\textit{global}背景。具体地说,SkeletonGCL连带图形通过执行分级、\emph{i{e{e{local}图表在序列中学习。但是,SkeletonGCL(S)在等级上实施一个分级差异性图表,\emphretret{l>内部契约和分级之间分布,提高了GNCN的能力来区分各种行动模式。此外,我们设计两个记忆库是为了从两个互补的层次上丰富跨序列背景背景环境,NEU{e,在多个背景学习。 因此,SCCNCNGCL建立了新的培训模式,CUG和S可以将GNUS(CUCxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxx的系统整合入。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员