The Hat Game (Ebert's Hat Problem) got much attention in the beginning of this century; not in the last place by its connections to coding theory and computer science. All players guess simultaneously the color of their own head observing only the hat colors of the other players. It is also allowed for each player to pass: no color is guessed. The team wins if at least one player guesses his or her own hat color correct and none of the players has an incorrect guess. This paper studies Ebert's hat problem, where the probabilities of the colors may be different (asymmetric case). Our goal is to maximize the probability of winning the game and to describe winning strategies. In this paper we introduce the notion of an adequate set. The construction of adequate sets is independent of underlying probabilities and we use this fact in the analysis of the asymmetric case. Another point of interest is the fact that computational complexity using adequate sets is much less than using standard methods.
翻译:帽子游戏( Ebert 的帽子问题) 本世纪初引起人们的极大关注, 而不是最后一个地方, 因为它与编码理论和计算机科学相关。 所有玩家都同时猜测自己的头部颜色, 只观察其他玩家的帽子颜色。 同时允许每个玩家通过: 没有颜色可以被猜测。 如果至少有一个玩家猜到自己的帽子颜色正确, 而没有一个玩家有不正确的猜测, 球队会赢。 本文研究Ebert 的帽子问题, 因为颜色的概率可能不同( 非对称性案例 ) 。 我们的目标是最大限度地提高赢得游戏的概率, 并描述获胜策略 。 在本文中, 我们引入一个合适的组合的概念 。 适当的组合的构建独立于基本概率, 我们用这个事实来分析对称性案例。 另一个感兴趣的问题是, 使用适当组合的计算复杂性远低于使用标准方法 。