In 1973, Fisk proved that any $4$-coloring of a $3$-colorable triangulation of the $2$-sphere can be obtained from any $3$-coloring by a sequence of Kempe-changes. On the other hand, in the case where we are only allowed to recolor a single vertex in each step, which is a special case of a Kempe-change, there exists a $4$-coloring that cannot be obtained from any $3$-coloring. In this paper, we present a characterization of a $4$-coloring of a $3$-colorable triangulation of the $2$-sphere that can be obtained from a $3$-coloring by a sequence of recoloring operations at single vertices, and a criterion for a $3$-colorable triangulation of the $2$-sphere that all $4$-colorings can be obtained from a $3$-coloring by such a sequence. Moreover, our first result can be generalized to a high-dimensional case, in which ``$4$-coloring,'' ``$3$-colorable,'' and ``$2$-sphere'' above are replaced with ``$k$-coloring,'' ``$(k-1)$-colorable,'' and ``$(k-2)$-sphere'' for $k \geq 4$, respectively. In addition, we show that the problem of deciding whether, for given two $(k+1)$-colorings, one can be obtained from the other by such a sequence is PSPACE-complete for any fixed $k \geq 4$. Our results above can be rephrased as new results on the computational problems named {\sc $k$-Recoloring} and {\sc Connectedness of $k$-Coloring Reconfiguration Graph}, which are fundamental problems in the field of combinatorial reconfiguration.
翻译:1973年, Fisk 证明, 任何3美元可变色的4美元色调, 3美元可变色色调 $2美元色调 $3美元色调 $2美元色调 $2美元色调 3美元色调 的Kempe 变换 。 另一方面, 在每步只允许重色一个单一的顶点, 这是Kempe 变色的特殊例子, 4美元色色调都无法从任何3美元彩色中得来。 此外, 在本文中, 我们的首次结果可以概括为高维 美元 $3美元 美元色调 $2美元 彩色调 3美元 的调色调 3美元色调 4美元色调色调 3美元 的调色调 3美元调色调 4美元调色调的调色调 3美元 3美元 3美元调色调调 3美元 3美元 3美元 的调调调 。 3美元 美元 美元 美元, 美元 美元 和 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 的 3 3 的 变色 变色 变色 的 的 变色 的, 的 变色 。