We introduce a generalized additive model for location, scale, and shape (GAMLSS) next of kin aiming at distribution-free and parsimonious regression modelling for arbitrary outcomes. We replace the strict parametric distribution formulating such a model by a transformation function, which in turn is estimated from data. Doing so not only makes the model distribution-free but also allows to limit the number of linear or smooth model terms to a pair of location-scale predictor functions. We derive the likelihood for continuous, discrete, and randomly censored observations, along with corresponding score functions. A plethora of existing algorithms is leveraged for model estimation, including constrained maximum-likelihood, the original GAMLSS algorithm, and transformation trees. Parameter interpretability in the resulting models is closely connected to model selection. We propose the application of a novel best subset selection procedure to achieve especially simple ways of interpretation. All techniques are motivated and illustrated by a collection of applications from different domains, including crossing and partial proportional hazards, complex count regression, non-linear ordinal regression, and growth curves. All analyses are reproducible with the help of the "tram" add-on package to the R system for statistical computing and graphics.
翻译:我们引入了广义加法模型(GAMLSS)的下一代版本,旨在为任意结果提供分布无关和简洁的回归建模。我们用一个变换函数替换严格的参数分布形式化这样的模型,该函数反过来从数据中进行估计。这样做不仅使模型成为分布无关的,而且还允许将线性或光滑模型条款的数量限制为一对位置-尺度预测器函数。我们推导了连续、离散和随机被审查观察的似然度以及相应的评分函数。对于模型估计,利用了大量现有的算法,包括约束的最大似然、原始GAMLSS算法和转换树。结果模型的参数可解释性与模型选择密切相关。我们提出了一种新颖的最佳子集选择过程,以实现特别简单的解释方式。所有技术都在不同领域的应用示例集合中进行了激励和说明,包括交叉和部分比例风险、复杂计数回归、非线性序数回归和增长曲线。所有分析都可以借助于用于统计计算和图形的R系统的“tram”附加包进行再现。