Human-robot shared control, which integrates the advantages of both humans and robots, is an effective approach to facilitate efficient surgical operation. Learning from demonstration (LfD) techniques can be used to automate some of the surgical subtasks for the construction of the shared control framework. However, a sufficient amount of data is required for the robot to learn the manoeuvres. Using a surgical simulator to collect data is a less resource-demanding approach. With sim-to-real adaptation, the manoeuvres learned from a simulator can be transferred to a physical robot. To this end, we propose a sim-to-real adaptation method to construct a human-robot shared control framework for robotic surgery. In this paper, a desired trajectory is generated from a simulator using LfD method, while dynamic motion primitives (DMPs) based method is used to transfer the desired trajectory from the simulator to the physical robotic platform. Moreover, a role adaptation mechanism is developed such that the robot can adjust its role according to the surgical operation contexts predicted by a neural network model. The effectiveness of the proposed framework is validated on the da Vinci Research Kit (dVRK). Results of the user studies indicated that with the adaptive human-robot shared control framework, the path length of the remote controller, the total clutching number and the task completion time can be reduced significantly. The proposed method outperformed the traditional manual control via teleoperation.
翻译:将人体和机器人的优势结合起来的人类机器人共享控制是便利高效外科手术操作的有效方法。 从演示( LfD) 技术中学习可以用来将一些用于构建共享控制框架的外科子任务自动化。 但是,需要足够数量的数据让机器人学习动作。 使用外科模拟器来收集数据是一种不太需要资源的方法。 通过模拟到现实的适应, 从模拟器学到的动作可以转移到物理机器人。 为此,我们建议采用模拟到真实的操作方法来为机器人外科手术建立一个人类机器人共同控制框架。 在本文中,一个理想的轨迹是从模拟器中生成的,使用LfD 方法,而动态运动原始(DMPs) 基础方法可以将理想的轨迹从模拟器转移到物理机器人平台。 此外,正在开发一种角色调整机制,使机器人能够根据由神经网络模型预测的外科操作环境调整其作用。 拟议的框架的精细化后期( KIT ) 和远程控制框架的精细化后期( KIT ) 的精细化后期研究后, 将大大地校验 。