While interacting with chatbots, users may elicit multiple intents in a single dialogue utterance. Instead of training a dedicated multi-intent detection model, we propose DialogUSR, a dialogue utterance splitting and reformulation task that first splits multi-intent user query into several single-intent sub-queries and then recovers all the coreferred and omitted information in the sub-queries. DialogUSR can serve as a plug-in and domain-agnostic module that empowers the multi-intent detection for the deployed chatbots with minimal efforts. We collect a high-quality naturally occurring dataset that covers 23 domains with a multi-step crowd-souring procedure. To benchmark the proposed dataset, we propose multiple action-based generative models that involve end-to-end and two-stage training, and conduct in-depth analyses on the pros and cons of the proposed baselines.
翻译:用户在与聊天室进行互动时,可能会在一次对话中引起多重意图。 我们提议对话USR(DialogUSR),这是一次对话的分解和重整任务,首先将多个意图的用户查询分成几个单一意图的子查询,然后收回子查询中所有共同命名和遗漏的信息。 对话USR(DialogUSR)可以作为一个插座和域名分析模块,使已部署的聊天室能够以最少的努力对已部署的聊天室进行多意图探测。我们收集了一个高质量的自然生成数据集,覆盖23个区域,采用多步人群观察程序。为了确定拟议数据集的基准,我们建议采用多个基于行动的基因化模型,包括端到端和两阶段培训,并对拟议基线的利弊进行深入分析。