The conditioning and accuracy of various inverse surface-source formulations are investigated. First, the normal systems of equations are discussed. Second, different implementations of the zero-field condition are analyzed regarding their effect on solution accuracy, conditioning, and source ambiguity. The weighting of the Love-current side constraint is investigated in order to provide an accurate problem-independent methodology. The transformation results for simulated and measured near-field data show a comparable behavior regarding accuracy and conditioning for most of the formulations. Advantages of the Love-current solutions are found only in diagnostic capabilities. Regardless of this, the Love side constraint is a computationally costly way to influence the iterative solver threshold, which is more conveniently controlled with the appropriate type of normal equation. The solution behavior of the inverse surface-source formulations is mostly influenced by the choice of the reconstruction surface. A spherical Huygens surface leads to the best conditioning, whereas the most accurate solutions are found with a tight, possibly convex hull around the antenna under test.
翻译:对各种反表源配方的调节和准确性进行了调查。首先,讨论了正常方程式的正常系统。第二,对零场条件的不同实施进行了分析,分析其对溶解准确性、调节性和来源模糊性的影响。对爱流侧制约的加权进行了调查,以便提供准确的自成问题的方法。模拟和测量的近地数据转换结果显示对大多数配方配方的准确性和调制的类似行为。只有诊断能力才能发现爱源方程式的优点。尽管如此,爱侧制约是一种计算成本昂贵的方法,可以影响迭代解码阈值,而迭代解码阈值更便于用正常方程式的适当类型加以控制。反面源配方的解决方案行为主要受重建表的选择影响。一个球形的Huygens表面可以导致最佳的调节,而最准确的解决方案则是在测试天线周围有一个紧凑的、可能是内流质的外壳。