In this paper, we introduce fully implementable, adaptive Euler-Maruyama schemes for McKean-Vlasov stochastic differential equations (SDEs) assuming only a standard monotonicity condition on the drift and diffusion coefficients but no global Lipschitz continuity in the state variable for either, while global Lipschitz continuity is required for the measure component only. We prove moment stability of the discretised processes and a strong convergence rate of $1/2$. Several numerical examples, centred around a mean-field model for FitzHugh-Nagumo neurons, illustrate that the standard uniform scheme fails and that the adaptive approach shows in most cases superior performance to tamed approximation schemes. In addition, we introduce and analyse an adaptive Milstein scheme for a certain sub-class of McKean-Vlasov SDEs with linear measure-dependence of the drift.
翻译:在本文中,我们为McKan-Vlassov随机差异方程式引入了完全可执行的适应性Euler-Maruyama方案,这些方程式仅假设漂移和传播系数的标准单一性条件,但两者中任何一个都不存在全球利普西茨变量的连续性,而测量组件只需要全球利普西茨的连续性。我们证明,分解过程的稳定性和1/2美元的强烈趋同率是一瞬间。几个数字例子围绕FitzHugh-Nagumo神经元的中位模型,表明标准的统一方案失败,适应性方法在大多数情况下显示适应性近似方案效果优异。此外,我们引入并分析具有流线性测量依赖性的麦肯-弗拉索夫SDE的某些子类的适应性米尔施泰因方案。