We introduce Tritium, an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML). Optimal noise calibration in this setting requires efficient Jacobian matrix computations and tight bounds on the L2-sensitivity. Our framework achieves these objectives by relying on a functional analysis-based method for sensitivity tracking, which we briefly outline. This approach interoperates naturally and seamlessly with static graph-based automatic differentiation, which enables order-of-magnitude improvements in compilation times compared to previous work. Moreover, we demonstrate that optimising the sensitivity of the entire computational graph at once yields substantially tighter estimates of the true sensitivity compared to interval bound propagation techniques. Our work naturally befits recent developments in DP such as individual privacy accounting, aiming to offer improved privacy-utility trade-offs, and represents a step towards the integration of accessible machine learning tooling with advanced privacy accounting systems.
翻译:我们引入了Tritium,这是用于不同私人(DP)机器学习的基于差异的自动区分敏感度分析框架。在这个环境中,最佳的噪声校准要求高效的Jacobian矩阵计算和L2感应仪的严格界限。我们的框架通过依赖基于功能的分析的敏感度跟踪方法实现这些目标,我们简要概述了这种方法。这种方法与基于静态图形的自动区分自然地和无缝地相互作用,从而能够与以往的工作相比,在汇编时间上实现质量上的改进。此外,我们还表明,优化整个计算图表的敏感性,与间隔的传播技术相比,将真正敏感度的估计数大幅收紧。我们的工作自然适合DP的最新发展,例如个人隐私会计,目的是提供更好的隐私效用交易,这是朝着将无障碍的机器学习工具与先进的隐私核算系统相结合迈出的一步。