Normalizing flows are tractable density models that can approximate complicated target distributions, e.g. Boltzmann distributions of physical systems. However, current methods for training flows either suffer from mode-seeking behavior, use samples from the target generated beforehand by expensive MCMC methods, or use stochastic losses that have high variance. To avoid these problems, we augment flows with annealed importance sampling (AIS) and minimize the mass-covering $\alpha$-divergence with $\alpha=2$, which minimizes importance weight variance. Our method, Flow AIS Bootstrap (FAB), uses AIS to generate samples in regions where the flow is a poor approximation of the target, facilitating the discovery of new modes. We apply FAB to multimodal targets and show that we can approximate them very accurately where previous methods fail. To the best of our knowledge, we are the first to learn the Boltzmann distribution of the alanine dipeptide molecule using only the unnormalized target density, without access to samples generated via Molecular Dynamics (MD) simulations: FAB produces better results than training via maximum likelihood on MD samples while using 100 times fewer target evaluations. After reweighting the samples, we obtain unbiased histograms of dihedral angles that are almost identical to the ground truth.
翻译:标准化流是可移动的密度模型,可以大致接近复杂的目标分布,例如,Boltzmann分布物理系统;然而,目前培训流的方法要么存在寻求模式的行为,利用昂贵的MCMC方法事先产生的目标样本,或者使用差异很大的混合模型损失。为避免这些问题,我们用麻醉重要取样(AIS)来增加流动,并尽可能减少大规模覆盖的alpha$-diverence,使用美元=2美元,以尽可能降低重量差异。我们的方法是流动AIS布设(FAB),使用AIS在流动不接近目标的区域生成样本,为发现新模式提供便利。我们将FAB应用于多式联运目标,并表明我们可以非常准确地在以往方法失败的地方对其进行匹配。据我们所知,我们首先只用非正常的目标密度来学习炭酸低脂肪分子的Boltzmann分布,而不能获取通过分子分子分子动态模拟(MD)生成的样本:FAB在利用最接近的地面样本进行质量的测试后,我们通过最接近的地面样本获得比我们更精确的样品。</s>