Maximum a posteriori decoding, a commonly used method for neural machine translation (NMT), aims to maximize the estimated posterior probability. However, high estimated probability does not always lead to high translation quality. Minimum Bayes Risk (MBR) decoding offers an alternative by seeking hypotheses with the highest expected utility. In this work, we show that Quality Estimation (QE) reranking, which uses a QE model as a reranker, can be viewed as a variant of MBR. Inspired by this, we propose source-based MBR (sMBR) decoding, a novel approach that utilizes synthetic sources generated by backward translation as ``support hypotheses'' and a reference-free quality estimation metric as the utility function, marking the first work to solely use sources in MBR decoding. Experiments show that sMBR significantly outperforms QE reranking and is competitive with standard MBR decoding. Furthermore, sMBR calls the utility function fewer times compared to MBR. Our findings suggest that sMBR is a promising approach for high-quality NMT decoding.
翻译:暂无翻译