This paper investigates the presence of overfitting when using Binary Particle Swarm Optimization (BPSO) to perform the feature selection in a context of Handwritten Signature Verification (HSV). SigNet is a state of the art Deep CNN model for feature representation in the HSV context and contains 2048 dimensions. Some of these dimensions may include redundant information in the dissimilarity representation space generated by the dichotomy transformation (DT) used by the writer-independent (WI) approach. The analysis is carried out on the GPDS-960 dataset. Experiments demonstrate that the proposed method is able to control overfitting during the search for the most discriminant representation.
翻译:本文件调查了在使用二进制粒子蜂窝优化化(BPSO)在手写签名核查(HSV)背景下进行特征选择时是否存在过大。 SigNet是深度CNN在HSV背景下进行特征描述的最新模式,包含2048个维度,其中某些维度可能包括独立作家(WI)使用的二进制转换(DT)所产生的不同代表空间中的多余信息。对GPDS-960数据集进行了分析。实验表明,在寻找最不相容的代表时,拟议方法能够控制是否适合。