Human-technology collaboration relies on verbal and non-verbal communication. Machines must be able to detect and understand the movements of humans to facilitate non-verbal communication. In this article, we introduce ongoing research on human activity recognition in intralogistics, and show how it can be applied in industrial settings. We show how semantic attributes can be used to describe human activities flexibly and how context informantion increases the performance of classifiers to recognise them automatically. Beyond that, we present a concept based on a cyber-physical twin that can reduce the effort and time necessary to create a training dataset for human activity recognition. In the future, it will be possible to train a classifier solely with realistic simulation data, while maintaining or even increasing the classification performance.
翻译:人类技术合作依赖于口头和非口头交流。 机器必须能够检测和理解人类的移动,以促进非口头交流。 在本条中,我们引入了当前关于人类活动在内部医学中的识别研究,并展示了如何在工业环境中应用人类活动。我们展示了如何使用语义属性灵活描述人类活动,以及背景信息如何提高分类员的自动识别能力。除此之外,我们提出了一个基于网络物理双胞胎的概念,可以减少为人类活动识别创建培训数据集所需的努力和时间。今后,有可能仅用现实的模拟数据培训分类员,同时保持甚至提高分类性能。