Communication overhead hinders the scalability of large-scale distributed training. Gossip SGD, where each node averages only with its neighbors, is more communication-efficient than the prevalent parallel SGD. However, its convergence rate is reversely proportional to quantity $1-\beta$ which measures the network connectivity. On large and sparse networks where $1-\beta \to 0$, Gossip SGD requires more iterations to converge, which offsets against its communication benefit. This paper introduces Gossip-PGA, which adds Periodic Global Averaging into Gossip SGD. Its transient stage, i.e., the iterations required to reach asymptotic linear speedup stage, improves from $\Omega(\beta^4 n^3/(1-\beta)^4)$ to $\Omega(\beta^4 n^3 H^4)$ for non-convex problems. The influence of network topology in Gossip-PGA can be controlled by the averaging period $H$. Its transient-stage complexity is also superior to Local SGD which has order $\Omega(n^3 H^4)$. Empirical results of large-scale training on image classification (ResNet50) and language modeling (BERT) validate our theoretical findings.
翻译:Gossip SGD 阻碍大规模分布式培训的可扩缩性。 Gossip SGD, 其中每个节点仅与邻居平均, 与普遍的平行 SGD 相比, 通信效率更高。 然而, 其趋同率与量度网络连通的1美元比贝塔美元反比。 在1美元\beta 3美元( 1-\ 贝塔 3美元) 美元 4 美元 至 美元 的大型和稀疏网络上, Gossip SGD 需要更多的迭接合, 这抵消了它的传播效益。 本文介绍了 Gossip- PGD, 它在 Gossip SGD 中增加了定期全球动画。 它的中位阶段, 即达到无线加速阶段所需的循环率, 从 $\\ 美元 ( beta4 n 3 n 美元 美元 3 - ( 1\\ beta) 4 美元 到 美元 O mega (betregrealalalalalalal legalalal legresulational legisalal legal lemental legal legal leget lement lement $ has $ has $HHHHMDGDGD) 。 它的高级和高级高级高级高级智能图图图图图图图图和高级图和高级图图和高级图和高级平级图和高级平级图图图图图图图图图, 4