Ride-sourcing or transportation network companies (TNCs) provide on-demand transportation service for compensation, connecting drivers of personal vehicles with passengers through smartphone applications. In this study, we consider the problem of estimating a spatiotemporally varying probability distribution for the productivity of a TNC driver, using data on more than 1.2 million TNC trips in Austin, Texas. We propose a graph-based smoothing approach that allows for distinct spatial and temporal dynamics, including different degrees of smoothness, spatio-temporal interactions, and interpolation in regions with little or no data. For such a goal, we introduce the Graph-fused Elastic Net (GFEN) and use it in combination with a dyadic tree decomposition for density estimation. In addition, we present an optimization-driven approach for fast point estimates scalable to massive graphs. Bayesian inference and uncertainty quantification with MCMC are also illustrated. The main results demonstrate that the optimization strategy is an effective exploration tool for selecting adequate regularization schemes using Bayesian optimization of the cross-validation loss. Two key empirical findings made possible by our method include: 1) the probability that a TNC driver can expect to earn a living wage in Austin exhibits high variability in space and time, from as low as 25% to as high as 85%; and 2) some drivers suffer considerable "tail risk", with the bottom 10% of the earnings distribution falling below $10 per hour -- grossly below a living wage in Austin for a single adult -- for specific times and locations. All code and data for the paper are publicly available, as a Shiny app for visualizing the results and a software package in Julia for implementing the GFEN.
翻译:流动或运输网络公司(TNCs)提供按需运输补偿服务,将个人车辆司机与乘客通过智能手机应用程序连接起来。在本研究中,我们考虑如何利用在得克萨斯州奥斯汀超过120万次跨国公司旅行的数据,估计跨国公司司机生产率的随机概率分布不一的问题。我们建议采用基于图表的平滑方法,允许不同的空间和时间动态,包括不同程度的平滑、空时互动和在数据很少或没有数据的区域进行内插。为了实现这一目标,我们采用了图表使用的 Elastic Net(GEN),并结合对密度估计的三角树分解位置使用这一方法。此外,我们提出了一种优化驱动方法,用于快速估算可与大图表相比的120万次跨国公司旅行。我们还演示了一种基于图表的平滑动方法,允许不同空间和时间的光滑动,包括不同程度的平滑动(Bayesia-时间的平整)和交叉估值损失的平整组合。为此,我们的方法得出的两个关键经验结论结论结论结论是:在正常时间里,在正常时间里可以实现一定的平流数据,在25年的平流中,作为高的平流数据流数据流数据,在10年的平流中可以实现一个高位上。