As interpretability has been pointed out as the obstacle to the adoption of Deep Neural Networks (DNNs), there is an increasing interest in solving a transparency issue to guarantee the impressive performance. In this paper, we demonstrate the efficiency of recent attribution techniques to explain the diagnostic decision by visualizing the significant factors in the input image. By utilizing the characteristics of objectness that DNNs have learned, fully decomposing the network prediction visualizes clear localization of target lesion. To verify our work, we conduct our experiments on Chest X-ray diagnosis with publicly accessible datasets. As an intuitive assessment metric for explanations, we report the performance of intersection of Union between visual explanation and bounding box of lesions. Experiment results show that recently proposed attribution methods visualize the more accurate localization for the diagnostic decision compared to the traditionally used CAM. Furthermore, we analyze the inconsistency of intentions between humans and DNNs, which is easily obscured by high performance. By visualizing the relevant factors, it is possible to confirm that the criterion for decision is in line with the learning strategy. Our analysis of unmasking machine intelligence represents the necessity of explainability in the medical diagnostic decision.


翻译:正如人们指出的,作为采用深神经网络(DNN)的障碍,可解释性是阻碍采用深神经网络(DNN)的障碍,人们越来越有兴趣解决透明度问题,以保证令人印象深刻的性能。在本文中,我们展示了最近的归因技术的效率,通过对输入图像中的重要因素进行视觉化来解释诊断决定。通过利用DNN所学的物体特性,使网络预测完全分解,将目标损伤明显地定位为视觉化。为了核查我们的工作,我们用可公开查阅的数据集对Chest X射线诊断进行实验。作为解释的直观评估指标,我们报告了联盟在视觉解释和受损害框之间相互交叉的性能。实验结果显示,最近提出的归因方法将诊断决定的归因与传统上使用的CAM相比较的更准确性地方化。此外,我们分析了人类和DNNNN之间意图的不一致性,这很容易被高性能所掩盖。通过对相关因素进行直观化,我们有可能确认决定的标准与学习战略一致。我们对不严谨的机器情报的分析表明诊断决定的必要性。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年8月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Aesthetics and neural network image representations
Arxiv
0+阅读 · 2021年9月16日
Arxiv
65+阅读 · 2021年6月18日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
8+阅读 · 2019年8月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员