We analyze the spaces of images encoded by generative networks of the BigGAN architecture. We find that generic multiplicative perturbations away from the photo-realistic point often lead to images which appear as "artistic renditions" of the corresponding objects. This demonstrates an emergence of aesthetic properties directly from the structure of the photo-realistic environment coupled with its neural network parametrization. Moreover, modifying a deep semantic part of the neural network encoding leads to the appearance of symbolic visual representations.
翻译:我们分析了由BigGAN结构的基因网络编码的图像空间。 我们发现,远离光-现实点的通用多复制性扰动往往导致图像的出现,这些图像被看成是相应对象的“艺术移位 ” 。 这显示了直接从摄影-现实环境结构及其神经网络的平衡化中产生的美学特性。 此外,修改神经网络编码的深层语义部分导致象征性的视觉表现的出现。