Visuotactile sensing technology is becoming more popular in tactile sensing, but the effectiveness of the existing marker detection localization methods remains to be further explored. Instead of contour-based blob detection, this paper presents a learning-based marker localization network for GelStereo visuotactile sensing called Marknet. Specifically, the Marknet presents a grid regression architecture to incorporate the distribution of the GelStereo markers. Furthermore, a marker rationality evaluator (MRE) is modelled to screen suitable prediction results. The experimental results show that the Marknet combined with MRE achieves 93.90% precision for irregular markers in contact areas, which outperforms the traditional contour-based blob detection method by a large margin of 42.32%. Meanwhile, the proposed learning-based marker localization method can achieve better real-time performance beyond the blob detection interface provided by the OpenCV library through GPU acceleration, which we believe will lead to considerable perceptual sensitivity gains in various robotic manipulation tasks.
翻译:在触觉感测中,配额感测技术越来越受欢迎,但现有的标记检测本地化方法的有效性仍有待进一步探讨。本文不是基于等离子浮筒探测,而是为GelStereo 相对于配额感测提供一种基于学习的标记本地化网络,称为Marknet。具体地说,Marknet展示了一个网格回归结构,以纳入GelStereo标记的分布。此外,一个标记合理性评价员(MRE)正在模拟,以筛选适当的预测结果。实验结果显示,Marknet与MRE相结合,在接触地区,异常标记的精确度达到了93.90%,大大超过传统的基于等离子的浮桶探测方法42.32%。与此同时,拟议的基于学习的标记本地化方法可以在OpenCV图书馆通过GPU加速提供的浮标检测界面之外实现更好的实时性性能。 我们认为,这将在各种机器人操纵任务中带来相当大的感知性灵敏度增益。