Deep learning has enabled impressive progress in the accuracy of semantic segmentation. Yet, the ability to estimate uncertainty and detect failure is key for safety-critical applications like autonomous driving. Existing uncertainty estimates have mostly been evaluated on simple tasks, and it is unclear whether these methods generalize to more complex scenarios. We present Fishyscapes, the first public benchmark for uncertainty estimation in a real-world task of semantic segmentation for urban driving. It evaluates pixel-wise uncertainty estimates towards the detection of anomalous objects in front of the vehicle. We~adapt state-of-the-art methods to recent semantic segmentation models and compare approaches based on softmax confidence, Bayesian learning, and embedding density. Our results show that anomaly detection is far from solved even for ordinary situations, while our benchmark allows measuring advancements beyond the state-of-the-art.
翻译:深层的学习使得在语义分隔的准确性方面取得了令人印象深刻的进展。然而,估算不确定性和检测故障的能力是诸如自主驾驶等安全关键应用的关键。现有的不确定性估计大多是按简单的任务来评估的,而且不清楚这些方法是否概括到更为复杂的假设中。我们提出了Fishyscape,这是在城市驾驶的语义分隔这一现实世界性任务中进行不确定性估计的第一个公共基准。它评估了在车辆前面探测异常物体的像素一样的不确定性估计值。我们对最近的语义分隔模型采用最先进的方法,并比较基于软麦克斯信心、贝叶斯学习和嵌入密度的方法。我们的结果显示,即使在普通情况下,异常探测也远远没有解决,而我们的基准则允许衡量超越最新技术的进展。