Popular graph neural networks implement convolution operations on graphs based on polynomial spectral filters. In this paper, we propose a novel graph convolutional layer inspired by the auto-regressive moving average (ARMA) filter that, compared to polynomial ones, provides a more flexible frequency response, is more robust to noise, and better captures the global graph structure. We propose a graph neural network implementation of the ARMA filter with a recursive and distributed formulation, obtaining a convolutional layer that is efficient to train, localized in the node space, and can be transferred to new graphs at test time. We perform a spectral analysis to study the filtering effect of the proposed ARMA layer and report experiments on four downstream tasks: semi-supervised node classification, graph signal classification, graph classification, and graph regression. Results show that the proposed ARMA layer brings significant improvements over graph neural networks based on polynomial filters.
翻译:大众图形神经网络在基于多角度光谱过滤器的图形上实施演进操作。 在本文中, 我们提出一个由自动递减移动平均值(ARMA)过滤器启发的新型图形进化层, 该过滤器与多元移动平均值(ARMA)相比更加灵活, 能够提供更灵活的频率反应, 更强地捕捉噪音, 并更好地捕捉全球图形结构。 我们提议一个具有循环和分布式配制的ARMA过滤器的图形神经网络实施, 获得一个高效培训、 在节点空间本地化、 并在测试时可以转移到新的图形层。 我们进行光谱分析, 以研究拟议的ARMA层的过滤效果, 并报告四项下游任务: 半超节点分类、 图形信号分类、 图形分类、 图形分类和图形回归。 结果表明, 拟议的ARMA 层在基于多层次过滤器的图形神经网络上带来了显著的改进。