We present a forward sufficient dimension reduction method for categorical or ordinal responses by extending the outer product of gradients and minimum average variance estimator to multinomial generalized linear model. Previous work in this direction extend forward regression to binary responses, and are applied in a pairwise manner to multinomial data, which is less efficient than our approach. Like other forward regression-based sufficient dimension reduction methods, our approach avoids the relatively stringent distributional requirements necessary for inverse regression alternatives. We show consistency of our proposed estimator and derive its convergence rate. We develop an algorithm for our methods based on repeated applications of available algorithms for forward regression. We also propose a clustering-based tuning procedure to estimate the tuning parameters. The effectiveness of our estimator and related algorithms is demonstrated via simulations and applications.
翻译:我们通过将梯度的外积和最小平均方差估计器推广到多项式广义线性模型,提出了一种适用于分类或有序响应的前向充分降维方法。在这个方向上的先前工作将前向回归推广到二元响应,并以成对的方式应用于多项式数据,这比我们的方法不那么高效。像其他基于前向回归的充分降维方法一样,我们的方法避免了逆回归替代品相对严格的分布要求。我们显示了所提出的估计量的一致性并推导出其收敛速率。我们基于重复应用前向回归的可用算法开发了一个算法来快速实现我们的方法。我们还提出了一种基于聚类的调整程序来估计调整参数。通过模拟和应用程序,我们证明了我们的估计量和相关算法的有效性。