Federated learning (FL), an effective distributed machine learning framework, implements model training and meanwhile protects local data privacy. It has been applied to a broad variety of practice areas due to its great performance and appreciable profits. Who owns the model, and how to protect the copyright has become a real problem. Intuitively, the existing property rights protection methods in centralized scenarios (e.g., watermark embedding and model fingerprints) are possible solutions for FL. But they are still challenged by the distributed nature of FL in aspects of the no data sharing, parameter aggregation, and federated training settings. For the first time, we formalize the problem of copyright protection for FL, and propose FedRight to protect model copyright based on model fingerprints, i.e., extracting model features by generating adversarial examples as model fingerprints. FedRight outperforms previous works in four key aspects: (i) Validity: it extracts model features to generate transferable fingerprints to train a detector to verify the copyright of the model. (ii) Fidelity: it is with imperceptible impact on the federated training, thus promising good main task performance. (iii) Robustness: it is empirically robust against malicious attacks on copyright protection, i.e., fine-tuning, model pruning, and adaptive attacks. (iv) Black-box: it is valid in the black-box forensic scenario where only application programming interface calls to the model are available. Extensive evaluations across 3 datasets and 9 model structures demonstrate FedRight's superior fidelity, validity, and robustness.


翻译:

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ICML2022】Neurotoxin:联邦学习的持久后门
专知会员服务
17+阅读 · 2022年6月26日
AAAI 2022 | 面向图数据的对抗鲁棒性研究
专知会员服务
20+阅读 · 2022年1月4日
鲁棒和隐私保护的协同学习
专知会员服务
35+阅读 · 2021年12月22日
UCL最新「机器学习隐私」综述论文,概述隐私挑战
专知会员服务
36+阅读 · 2021年7月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
模型攻击:鲁棒性联邦学习研究的最新进展
机器之心
34+阅读 · 2020年6月3日
您可以相信模型的不确定性吗?
TensorFlow
14+阅读 · 2020年1月31日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员