We introduce two new metrics of "simplicity" for knight's tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with $9.25n+O(1)$ turns and $12n+O(1)$ crossings on an $n\times n$ board, and we show lower bounds of $(6-\epsilon)n$ and $4n-O(1)$ on the respective problems of minimizing these metrics. Hence, our algorithm achieves approximation ratios of $9.25/6+o(1)$ and $3+o(1)$. Our algorithm takes linear time and is fully parallelizable, i.e., the tour can be computed in $O(n^2/p)$ time using $p$ processors in the CREW PRAM model. We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for $(1,4)$-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.
翻译:我们为骑士旅行引入了两种“简化”的新标准:转折次数和过境次数。我们给出了一种新型算法,以9.25n+O(1)美元转折和12n+O(1)美元转折方式制作导游服务,在美元比值为n美元,在美元比值为n美元比值为1美元比值为12n+O(1)美元,在尽量减少这些比值的各自问题上,我们给出了较低的界限(6-\epsilon)n美元和4n-O(1)美元。因此,我们的算法达到了9.25/6+o(1)美元和3+o(1)美元的近似率。我们的算法需要线性时间,完全可以平行,也就是说,在CREW PRAM模型中,可以用美元比值为1美元处理器计算出旅行时间。我们把我们的技术概括为矩形板、高尺寸板、对称巡游、缺少角的奇特板和游历为$(1-4美元比值为leapers。在这样做时,我们表明这些扩展也承认最低转弯数和多数情况下的跨越次数都有一个连续的近比率比率。